Week 10 Calculus I Outline of Notes

by S. Gramlich

(updated 12/11/06)

 

I)          4.3 & 4.5 Curve Sketching, pp. 317-318

                        A.  Domain (sec 1.1, restrictions)

                        B.  X & Y Intercepts (Appendix B)

                        C.  Symmetry (sec 1.1, f(-x)=f(x) => even & symm wrt y-axis,

                                    f(-x)=-f(x) => odd & symm wrt origin)

                        D.  Asymptotes

                                    Vertical (sec 2.2)

                                    Horizontal (sec 2.6, div by hi pwr of den & use HA thm)

                                    Slant (sec 4.5, if degree of num is +1> degree of den,

                                                 then use long division & quotient is SA)

                        E.  Intervals of Incr/Decr (sec 4.3)

                                    I/D Test, p. 296; f'>0, incr; f'<0, decr

                                    1.  find f'(c)=0 & solve for c

                                    2.  setup intervals wrt c & use test points (tp) to id incr/decr

                        F.  Local Max & Min

                                    1st Deriv Test, p. 297

                                    from I/D Test: f' goes + to - => max; f' goes - to + => min;

                                                                        no change => no max/min

                                    OR 2nd Deriv Test, p. 301

                                    f"(c) > 0, min; f"(c) < 0, max; f"(c)=0, inconclusive

                        G.  Concavity & Points of Inflection

                                    Concavity, p. 299, Def & Fig 6;

                                    Concave upward=holds water up, Concave downward=spills water down

                                    Concavity Test, p. 300; f">0, up; f"<0, down

                                                1.  solve f"(p)=0

                                                2.  setup intervals wrt p & use tp to id up/down

                                    Points of Inflection, p. 299, Fig 7

                                    p. 300; from Conc test: concave up to down & vice versa

                        H.  Sketch using all information from A-G

            4.5, p. 322, Example 6 & 4.3, p. 298, Example 3

 

II)        4.4 Indeterminate Forms

(A) if lim (x -> a) f(x)/g(x) = 0/0 or ∞/∞,

then use L'Hospital's Rule & Limit Law #5 (sec 2.3, p. 104): lim (x -> a) f'(x)/g'(x)

4.4, Example 2, p. 309

(B) if indeterminate form 0*∞,

then rewrite fg as f/ (1/g) to change form to 0/0 or ∞/∞ & use L'Hospital's Rule

4.4, Example 6, p. 311

(C) if indeterminate form ∞ - ∞,

then convert difference to a quotient 0/0 or ∞/∞ & use L'Hospital's Rule

(D) if indeterminate form 00, ∞0, 1,

then use logarithmic differentiation or eln x=x (sec 1.6, p.68) & L'Hospital's Rule

4.4, Example 8, p. 312