Week 10 Calculus I Outline of Notes
by
(updated
I) 4.3
& 4.5 Curve Sketching, pp. 317-318
A. Domain (sec 1.1, restrictions)
B. X & Y Intercepts (Appendix B)
C. Symmetry (sec 1.1, f(-x)=f(x)
=> even & symm wrt
y-axis,
f(-x)=-f(x) => odd & symm wrt origin)
D. Asymptotes
Vertical
(sec 2.2)
Horizontal
(sec 2.6, div by hi pwr of den & use HA thm)
Slant
(sec 4.5, if degree of num is +1> degree of den,
then use long
division & quotient is SA)
E. Intervals of Incr/Decr
(sec 4.3)
I/D
Test, p. 296; f'>0, incr; f'<0, decr
1. find f'(c)=0 &
solve for c
2. setup intervals wrt c & use test points (tp)
to id incr/decr
F. Local Max & Min
1st
Deriv Test, p. 297
from I/D Test: f' goes + to - => max; f' goes - to +
=> min;
no change => no max/min
OR
2nd Deriv Test, p. 301
f"(c)
> 0, min; f"(c) < 0, max; f"(c)=0,
inconclusive
G. Concavity & Points of Inflection
Concavity,
p. 299, Def & Fig 6;
Concave
upward=holds water up, Concave downward=spills water down
Concavity
Test, p. 300; f">0, up; f"<0, down
1. solve f"(p)=0
2. setup intervals wrt p & use tp to id up/down
Points
of Inflection, p. 299, Fig 7
p.
300; from Conc test: concave up to down & vice
versa
H. Sketch using all information from A-G
4.5,
p. 322, Example 6 & 4.3, p. 298, Example 3
II) 4.4
Indeterminate Forms
(A) if lim (x -> a) f(x)/g(x) = 0/0 or ∞/∞,
then use L'Hospital's Rule & Limit Law #5 (sec 2.3, p. 104): lim (x -> a) f'(x)/g'(x)
4.4, Example 2, p. 309
(B) if indeterminate form 0*∞,
then rewrite fg as f/ (1/g) to
change form to 0/0 or ∞/∞ & use L'Hospital's
Rule
4.4, Example 6,
p. 311
(C) if indeterminate form ∞ - ∞,
then convert difference to a quotient 0/0 or ∞/∞
& use L'Hospital's Rule
(D) if indeterminate form 00, ∞0, 1∞,
then use logarithmic differentiation or eln
x=x (sec 1.6, p.68) & L'Hospital's Rule
4.4, Example 8,
p. 312